Erinevus tõenäosuse ja koefitsientide vahel

Tõenäosus vs koefitsiendid

Päriselu on täis ebakindlusega juhtumeid. Tingimused tõenäosus ja koefitsiendid mõõdavad inimese usku tulevase sündmuse toimumisse. See võib segi minna, kuna nii koefitsiendid kui ka tõenäosus on seotud sündmuse võimaliku esinemisega. Siiski on erinevus. Tõenäosus on laiem matemaatiline mõiste. Koefitsiendid on siiski veel üks tõenäosuse arvutamise meetod.

Tõenäosus

Klassikalises teoorias kasutatakse tõenäosust, et arvutada tõenäosus, et midagi juhtub; suhtena soovitud tulemuste arv võimalike tulemuste koguarvu suhtes, mida väljendatakse arvuga vahemikus 0 kuni 1, kus 0 tähendab "võimatut" ja 1 tähendab "kindlat" või "kindlat". Seda väljendatakse ka kui sündmuse toimumise võimalust. Sel juhul on skaala vahemikus 0% kuni 100%.

Katse puhul, mille tulemused on võrdselt tõenäolised, saab sündmuse E tõenäosust, mida tähistatakse tähisega P (E), matemaatiliselt väljendada järgmiselt: E jaoks soodsate tulemuste arv jaguneb võimalike tulemuste koguarvuga.

Näiteks kui meil on purgis 10 marmorit, 4 sinist ja 6 rohelist, siis on rohelise tõmbamise tõenäosus 6/10 või 3/5. Rohelise marmori saamiseks on 6 võimalust ja marmori saamise tõenäosuste koguarv on 10. Sinise joonistamise tõenäosus on 4/10 või 2/5.

Koefitsiendid

Sündmuse koefitsiendid on alternatiivne viis sündmuse toimumise tõenäosuse väljendamiseks. Seda saab väljendada soodsate tulemuste arvu ja ebasoodsate tulemuste arvu suhtena, st koefitsiendid = soodsate tulemuste arv: ebasoodsate tulemuste arv.

Kuna rohelise valimiseks on 6 võimalust ja punase valimiseks 4 võimalust, on koefitsient 6: 4 rohelise valimise kasuks. Koefitsient on 4: 6 sinise valimise kasuks.

Koefitsientide idee pärineb hasartmängudest. Isegi tõenäosust on lihtne matemaatiliselt töötada, kuid hasartmängudes raskem rakendada. Seetõttu on meil kontseptsiooni väljendamiseks kaks erinevat viisi. Kui teame mõne sündmuse kasutegurit, on tõenäosus lihtsalt koefitsiendid jagatud ühega ja tõenäosusega. Koefitsiendid sõltuvad tõenäosusest. Koefitsiente saab arvutada tõenäosuse alusel. Tõenäosuse saab muuta ka paarituks. Lihtsalt on tõenäosus, et sündmuse kasuks jagatakse sündmuse tõenäosus ühega miinus tõenäosus: s.t koefitsiendid = tõenäosus / (1-tõenäosus). Kui on teada sündmuse kasutegurid, on tõenäosus lihtsalt koefitsiendid jagatud ühega pluss koefitsiendid: s.t tõenäosus = koefitsiendid / (1 + koefitsiendid).

Mis vahe on tõenäosusel ja koefitsiendil??

• Tõenäosust väljendatakse arvuga vahemikus 0 kuni 1, samas kui koefitsiente väljendatakse suhtena.

• Tõenäosus tagab sündmuse toimumise, kuid koefitsiente kasutatakse selleks, et teada saada, kas sündmus kunagi aset leiab.